TLD智能跟蹤器技術(shù)分析
在城市軌道交通的監(jiān)控中,智能視頻分析技術(shù)曾風(fēng)極一時(shí),然而由于城市軌道交通的監(jiān)控環(huán)境比較復(fù)雜,其不僅區(qū)域大、周界長、擁有多站臺(tái)多出入及眾多圍欄等相關(guān)設(shè)備。這種復(fù)雜的環(huán)境給智能分析帶來諸多困難,而作為當(dāng)前新穎的TLD[跟蹤-學(xué)習(xí)-檢測”(Tracking-Learning-Detection)的縮寫]視覺跟蹤技術(shù)能夠解決這些問題。
TLD跟蹤系統(tǒng)最大的特點(diǎn)就在于能對(duì)鎖定的目標(biāo)進(jìn)行不斷的學(xué)習(xí),以獲取目標(biāo)最新的外觀特征,從而及時(shí)完善跟蹤,以達(dá)到最佳的狀態(tài)。也就是說,開始時(shí)只提供一幀靜止的目標(biāo)圖像,但隨著目標(biāo)的不斷運(yùn)動(dòng),系統(tǒng)能持續(xù)不斷地進(jìn)行探測,獲知目標(biāo)在角度、距離、景深等方面的改變,并實(shí)時(shí)識(shí)別,經(jīng)過一段時(shí)間的學(xué)習(xí)之后,目標(biāo)就再也無法躲過。
TLD技術(shù)有三部分組成,即跟蹤器、學(xué)習(xí)過程和檢測器。TLD技術(shù)采用跟蹤和檢測相結(jié)合的策略,是一種自適應(yīng)的、可靠的跟蹤技術(shù)。TLD技術(shù)中,跟蹤器和檢測器并行運(yùn)行,二者所產(chǎn)生的結(jié)果都參與學(xué)習(xí)過程,學(xué)習(xí)后的模型又反作用于跟蹤器和檢測器,對(duì)其進(jìn)行實(shí)時(shí)更新,從而保證了即使在目標(biāo)外觀發(fā)生變化的情況下,也能夠被持續(xù)跟蹤。
跟蹤器
TLD跟蹤器采用重疊塊跟蹤策略,單塊跟蹤使用Lucas-Kanade光流法。TLD在跟蹤前需要指定待跟蹤的目標(biāo),由一個(gè)矩形框標(biāo)出。最終整體目標(biāo)的運(yùn)動(dòng)取所有局部塊移動(dòng)的中值,這種局部跟蹤策略可以解決局部遮擋的問題。
學(xué)習(xí)過程
TLD的學(xué)習(xí)過程是建立在在線模型(online model)的基礎(chǔ)上。在線模型是一個(gè)大小為15×15的圖像塊的集合,這些圖像塊來自跟蹤器和檢查器所得的結(jié)果,初始的在線模型為起始跟蹤時(shí)指定的待跟蹤的目標(biāo)圖像。
在線模型是一個(gè)動(dòng)態(tài)模型,它隨視頻序列增長或減小。在線模型的發(fā)展有兩個(gè)事件來驅(qū)動(dòng),分別為增長事件和修剪事件。由于在實(shí)際中,來自環(huán)境和目標(biāo)本身等多因素的影響,使目標(biāo)的外觀不斷發(fā)生變化,這使得由跟蹤器預(yù)測產(chǎn)生的目標(biāo)圖像會(huì)包含更多其它感興趣的因素。如果我們把跟蹤軌跡上所有目標(biāo)圖像看成一個(gè)特征空間,那么隨著視頻序列的推進(jìn),由跟蹤器所致的特征空間將不斷增大,這就是所說的增長事件。為了防止增長事件帶來的雜質(zhì)(其他非目標(biāo)圖像)影響跟蹤效果,采用了與之相對(duì)的修剪事件來平衡。修剪事件就是用來去除增長事件所致的雜質(zhì)。由此,兩事件的相互作用促使在線模型一直保持與當(dāng)前的跟蹤目標(biāo)相一致。
由增長事件帶來的特征空間的擴(kuò)張來自于跟蹤器,即從處于跟蹤軌跡上的目標(biāo)圖像中選擇合適的樣本,并以此來更新在線模型。有三種選擇策略,具體如下。
友情提醒 |
本信息真實(shí)性未經(jīng)中國工程機(jī)械信息網(wǎng)證實(shí),僅供您參考。未經(jīng)許可,請(qǐng)勿轉(zhuǎn)載。已經(jīng)本網(wǎng)授權(quán)使用的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:中國工程機(jī)械信息網(wǎng)”。 |
特別注意 |
本網(wǎng)部分文章轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多行業(yè)信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé)。在本網(wǎng)論壇上發(fā)表言論者,文責(zé)自負(fù),本網(wǎng)有權(quán)在網(wǎng)站內(nèi)轉(zhuǎn)載或引用,論壇的言論不代表本網(wǎng)觀點(diǎn)。本網(wǎng)所提供的信息,如需使用,請(qǐng)與原作者聯(lián)系,版權(quán)歸原作者所有。如果涉及版權(quán)需要同本網(wǎng)聯(lián)系的,請(qǐng)?jiān)?5日內(nèi)進(jìn)行。 |